Friday, November 27, 2009

Active Electronically Scanned Array Radar System (AESA)


An Active Electronically Scanned Array (AESA), also known as active phased array radar is a type of phased array radar whose transmitter and receiver functions are composed of numerous small solid-state transmit/receive (T/R) modules. AESAs aim their "beam" by broadcasting a number of different frequencies of coherent radio energy that interfere constructively at certain angles in front of the antenna. They improve on the older passive electronically scanned radars by spreading their broadcasts out across a band of frequencies, which makes it very difficult to detect over background noise. AESAs allow ships and aircraft to broadcast powerful radar signals while still remaining stealthy.
Radar systems generally work by connecting an antenna to a powerful radio transmitter to broadcast a short pulse of signal. The transmitter is then disconnected and the antenna is attached to a sensitive receiver which amplifies any echos from target objects and then sends the resulting output to a display of some sort. The transmitter elements were typically klystron tubes, which are suitable for amplifying a small range of frequencies. In order to scan a portion of the sky, the radar antenna has to be physically moved to point in different directions.
Starting in the 1960s new solid-state delays were introduced that led to the first practical large-scale passive electronically scanned array (PESA), or simply phased array radar. PESAs took a signal from a single source, split it up into hundreds of paths, selectively delayed some of them, and send them to individual antennas. The resulting broadcasts overlapped in space, and the interference patterns between the individual signals was selected in order to reinforce the signal at certain angles, and mute it down in all others. The delays could be easily controlled electronically, allowing the beam to be steered without the antenna having to move. A PESA can scan a volume of space much more quickly than a traditional mechanical system. Additionally, as the electronics improved, PESAs added the ability to produce several active beams, allowing them to continue scanning the sky while at the same time focusing smaller beams on certain targets for tracking or guiding semi-active radar homing missiles. PESAs quickly became widespread on ships and large fixed emplacements in the 1960s, followed by airborne sensors as the electronics shrank.
AESAs are the result of further developments in solid-state electronics. In earlier systems the broadcast signal was originally created in a klystron tube or similar device, which are relatively large. Receiver electronics were also large due to the high frequencies that they worked with. The introduction of gallium arsenide microelectronics through the 1980s served to greatly reduce the size of the receiver elements, until effective ones could be built at sizes similar to those of handheld radios, only a few centimeters in volume. The introduction of JFETs and MESFETs did the same to the transmitter side of the systems as well. Now an entire radar, the transmitter, receiver and antenna, could be shrunk into a single "transmitter-receiver module" (TRM) about the size of a carton of milk.
The primary advantage of a AESA over a PESA is that the different modules can operate on different frequencies. Unlike the PESA, where the signal was generated at single frequencies by a small number of transmitters, in the AESA each module broadcasts its own independent signal. This allows the AESA to produce numerous "sub-beams" and actively "paint" a much larger number of targets. Additionally, the solid-state transmitters are able to broadcast effectively at a much wider range of frequencies, giving AESAs the ability to change their operating frequency with every pulse sent out. AESAs can also produce beams that consist of many different frequencies at once, using post-processing of the combined signal from a number of TRMs to re-create a display as if there was a single powerful beam being sent.
Radar systems work by sending out a signal and then listening for its echo off distant objects. Each of these paths, to and from the target, is subject to the inverse square law of propagation. That means that a radar's received energy drops with the fourth power of distance, which is why radar systems require high powers, often in the megawatt range, in order to be effective at long range.
The radar signal being sent out is a simple radio signal, and can be received with a simple radio receiver. It is common to use such a receiver in the targets, normally aircraft, to detect radar broadcasts. Unlike the radar unit, which has to send the pulse out and then receive its reflection, the target's receiver does not need the reflection and thus the signal drops off only as the square of distance. This means that the receiver is always at an advantage over the radar in terms of range - it will always be able to detect the signal long before the radar can see the target's echo. Since the position of the radar is extremely useful information in an attack on that platform, this means that radars generally have to be turned off for lengthy periods if they are subject to attack; this is common on ships, for instance.
Turning that received signal into a useful display is the purpose of the "radar warning receiver" (RWR). Unlike the radar, which knows which direction it is sending its signal, the receiver simply gets a pulse of energy and has to interpret it. Since the radio spectrum is filled with noise, the receiver's signal is integrated over a short period of time, making periodic sources like a radar add up and stand out over the random background. Typically RWRs store the detected pulses for a short period of time, and compare their broadcast frequency and pulse repetition frequency against a database of known radars. The rough direction can be calculated using a rotating antenna, or similar passive array, and combined with symbology indicating the likely purpose of the radar - airborne early warning, surface to air missile, etc.
This technique is much less useful against AESA radars. Since the AESA can change its frequency with every pulse, and generally does so using a pseudo-random sequence, integrating over time does not help pull the signal out of the background noise. Nor does the AESA have any sort of fixed pulse repetition frequency, which can also be varied and thus hide any periodic brightening across the entire spectrum. Traditional RWRs are essentially useless against AESA radars.

No comments:

Post a Comment